Registry reference
Experiment components
The preferred way to set up an experiment is to use a YAML configuration. Use the [LR system selection helper](lrsystem_yaml.md) to learn how to use the YAML interface.
This page lists the components that may be needed to set up an experiment.
Experiment strategies
Registry section: experiment_strategies
experiment_strategies.single_run Prepare Experiment consisting of a single run using configuration values.
experiment_strategies.grid Prepare Experiment consisting of multiple runs using configuration values.
experiment_strategies.optuna Prepare Experiment for optimizing configuration parameters.
Data strategies
Registry section: data_strategies
data_strategies.binary_train_test_split Representation of a train/test split.
data_strategies.binary_cross_validation Representation of a K-fold cross validation iterator over each train/test split fold.
data_strategies.multiclass_train_test_split Representation of a multi-class train/test split.
data_strategies.multiclass_cross_validation Representation of a K-fold cross validation iterator over train/test splits.
data_strategies.predefined_train_test_split Splits data into a training set and a test set, according to pre-existing assignments in the data.
Data providers
Registry section: data_providers
data_providers.glass LA-ICP-MS measurements of elemental concentration from floatglass.
data_providers.parse_features_from_csv_file Read CSV data from file.
Metrics
Registry section: metric
metric.cllr Calculate a log likelihood ratio cost (C_llr) for a series of log likelihood ratios.
metric.cllr_min Estimate the discriminative power from a collection of log likelihood ratios.
metric.cllr_cal Calculate the difference between the C_llr before and after isotonic calibration.
metric.llr_lower_bound Provide corresponding lower bound for provided LLR data.
metric.llr_upper_bound Provide corresponding upper bound for provided LLR data.
Output
Registry section: output
Hyperparameters
Registry section: hyperparameter_types
hyperparameter_types.folder Parse the parameters section of the configuration into a FolderHyperparameter object.
LR system components
You may choose to use either the Python API or a YAML configuration to set up an LR system.
Use the Pracitioner’s Guide to learn how to use the Python API.
Use the [LR system selection helper](lrsystem_yaml.md) to learn how to use the YAML interface.
This page lists the components that may be needed to define an LR system.
LR system architecture
Registry section: lrsystem_architecture
LR system modules
Registry section: modules
modules.standard_scaler Standardize features by removing the mean and scaling to unit variance.
modules.probabilities_to_odds Converts a probability to odds.
modules.probabilities_to_logodds Converts probability values to their log odds with base 10.
modules.element_wise_difference Calculate the element-wise absolute difference between pairs.
modules.manhattan_distance Calculate the Manhattan distance between pairs.
modules.tee Parse configuration for allowing multiple tasks for given input.
modules.logistic_regression Logistic Regression (aka logit, MaxEnt) classifier.
modules.svm C-Support Vector Classification.
modules.kde Calculate LR from a score, belonging to one of two distributions using KDE.
modules.isotonic_calibrator Wrap SKlearn implementation to support infinite values.
modules.static_bounder Bound LLRs to constant values.
modules.elub_bounder Calculate the Emperical Upper and Lower Bounds for a given LR system.
modules.iv_bounder Calculate Invariance Verification bounds for a given LR system.
modules.n_source_bounder Bound LLRs based on the number of sources.
Pairing methods
Registry section: pairing
pairing.instance_pairs Construct pairs from a set of instances.
pairing.source_pairs Construct pairs of sources (i.e. classes) from an array of instances.